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Nonlinear electrohydrodynamic Rayleigh-Taylor instability is investigated. A 
charge-free surface separating two semi-infinite dielectric fluids influenced by a normal 
electric field is subjected to nonlinear deformations. We use the method of multiple- 
scale perturbations in order to obtain uniformly valid expansions near the cutoff 
wavenumber separating stable from unstable flows. We obhain two nonlinear 
SchrGdinger equations by means of which we can deduce the cutoff wavenumber and 
analyse the stability of the system. It is found that if a finite-amplitude wave exists 
then its small modulation is stable. We also obtain the surface elevation for such 
waves. The electric field plays a dual role in the stability criterion and the dielectric 
constant plays a distinctive role in this analysis. If the dielectric constant of the upper 
fluid is smaller than that of the lower fluid the field has a destabilizing effect for large 
wavenumbers. For relatively smaller wavenumbers the electric field stabilizes 
considerable parts of the first and second subharmonic regions in the stability 
diagrams; a result which is in contrast with the linear theory. If the dielectric. constant 
of the upper fluid is larger than that of the lower fluid, then the field is stabilizing 
for larger values of the wavenumber K when p is small (p  is the density ratio) and 
destabilizing for smaller values of K .  

1. Introduction 
It was reported experimentally by Gross & Porter (1966) that when a thermally 

and gravitationally stable stratification of a fluid is subjected to an electric field, 
instability occurs. This instability was explained by the suggestion that when a 
non-uniform field is applied to an inhomogeneous fluid having; variable dielectric 
constant, regions of lower dielectric constant will experience a force directed towards 
regions of lower field strength. Thus instability may arise due to  variation of the 
dielectric constant because of heating or any source of inhomogeneity . This experiment 
was followed by several attempts to explain this phcnomcnon under various 
conditions using the Rayleigh-BBnard model, such as those by Roberts (1969), 
Takashima & Aldridge (1976), Bradley (1978), Castellanos & Velarde (1981). It is 
found that the temperature dependence of the dielectric constant has no significant 
effects on the fluid layer, and stabilizing or destabilizing effects of the electric field 
depend on whether the conductivity is a linear function of temperature or a quadratic. 
function. The coupling of dielectric-constant variation and unipolar injection drast- 
ically alters the stability properties of the dielectric layer. Lacroix, Atten & Hopfinger 
(1975) claimed that there is no analogy with the BBnard problem because the 
instability is nonlinear. The electrohydrodynamic body forre is nonlinear and the 
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phenomenon cannot be accurately described by the linear theory. Studies in nonlinear 
electrohydrodynamic bulk instability then followed by Atten & Lacroix (1979) and 
Warraker & Richardson (1981). 

The abovementioned effect of the variation of the dielectric constant on bulk 
electrohydrodynamic stability leads one to expect similar behaviour in surface 
electrohydrodynamic stability. We feel that  the stability criterion for a surface 
separating two uncharged homogeneous dielectrics should be affected by the jump 
in the values of the dielectric constants and electric field across the surface. Such effects 
can appear through nonlinear analysis, since the linear theory did not predict them. 
I n  spite of the vanishing of the electrohydrodynamic body force in the bulk of the 
fluids, the integration of the body force across the surface will contribute to the 
stability criterion. There is experimental evidence of the nonlinear behaviour of 
electrohydrodynamic surface stability. Taylor (1969) reported that oscillations may 
be observed near the linear cutoff wavenumber separating stable and unstable 
disturbances. Mel'nikov & Meshkov (1981) suggested a nonlinear model to explain 
the charged dimples of the surface of liquid helium observed by Wanner & Leiderer 
(1979). 

We are prompted by these considerations to study the nonlinear electrohydro- 
dynamic stability of a Rayleigh-Taylor surface separating two dielectric fluids 
stressed by a normal electric field. I n  this paper we shall only study the case where 
there are no surface charges present on the interface. We shall be concerned with the 
following two main points. 

( i )  We shall examine the effect of the dielectric constant on the stability criterion. 
I n  the linear theory, the stability criterion is governed by the dispersion equation 
(Melcher 1963; Mohamed & Nayyar 1973) 

where W E P )  = F(2)Ep), g' is the acceleration due to gravity, K is the wavenumber 
of the disturbance, T is the surface tension, are the upper and lower fluid 
densities respectively, E(2) , (1)  are the upper and lower dielectric constants, Eh2)* (l)  are 
the electric fields and w is the frequency of the disturbance. The ratio of the dielectric 
constants has no effect in the sense that i t  is immaterial which of the fluids has a 
larger dielectric constant. 

(ii) We aim to study the stability of the system in general and particularly near 
the cutoff wavenumber K& obtained from the above relation by equating w to zero, 
exploring the possibility of having oscillations near the cutoff wavenumber a t  
positions considered unstable in the linear sense. Moreover, we wish to examine 
whether the electric field is strictly destabilizing, as predicted by the linear theory, 
or otherwise. 

Very few studies on nonlinear electrohydrodynamic Rayleigh-Taylor instability 
have been attempted. Melcher (1963) and Michael (1977) studied the nonlinear 
stability of the interface of a fluid of finite depth stressed by a normal electric field. 
I n  their models, there are charges on the interface. They studied conducting fluids, 
and therefore the effect of the dielectric constants is not accounted for in their 
analysis. The nonlinear cutoff wavenumbers were not evaluated in their studies. 

Kant, Jindia & Malik (1981) investigated the stability of weakly nonlinear waves 
on the surface of a fluid layer in the presence of an applied electric field by using the 
derivative expansion method. They also studied conducting fluids, and therefore the 
effect of the dielectric constants was also not accounted for in their analysis. 
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Works 
Taylor (1  
Rajappa 

on pure hydrodynamic Rayleigh-Taylor instabilities, such as those of 
950), Lewis (1950), Ingraham (1954), Emmons, Chang & Watson (1960), 
& Amaranath (1977), Davey & Stewartson (1974), Nayfeh (1969, 1976), 

showed that there are variations in the stability conditions in the nonlinear analysis 
from those of the linear theory. I n  order to evaluate the nonlinear cutoff wavenumber, 
care must be taken in choosing the perturbation technique for the problem at hand. 
The various perturbation expansions should be uniformly valid near the linear cutoff 
wavenumber. The method of multiple-scale perturbations was used successfully by 
Hasimoto & Ono (1972) for fluid of finite depth, and by Nayfeh (1976) for fluids of 
infinite depth, which is relevant to the present case. The latter derived two nonlinear 
Schrodinger equations describing the wave propagation on the surface. One of these 
equations is valid near the cutoff wavenumber. 

2. Formulation of the problem 
Consider two semi-infinite dielectric inviscid fluids separated by the plane y = 0. 

The upper and lower densities of the fluids are P ( ~ ) ,  p ( l )  respectively. Both of the fluids 
are subject to a constant electric field in the y-direction (Biz), Eil) respectively). 

We shall assume that there are no surface charges a t  the surface of separation in 
the equilibrium state, and therefore the electric displacement is continuous at the 

interface, i.e. g(”(1)E(1) = E“(2)EW. 
0 0 

I n  our analysis the various quantities are non-dimensionalized using the charact- 
eristic length L = (T/p(l) g’)i and the characteristic time (L/g’)i, where T is the surface 
tension and g’ is the acceleration due to gravity acting in the negative y-direction. 
The superscripts (1)  and (2) refer to quantities in the lower fluid and upper fluid 
respectively. The velocity potential 4 satisfies the equation 

p p ) ,  (1) a 2 $ ( 2 ) .  (1 )  +-- - 0,  
a x 2  

where V(Z), (1) = V$4(2).(1) 

The solutions for q5 have to satisfy, a t  large distance, the conditions 

IV#2)1+0 as y +  00, 

IV#(lIj+O as y+--oo. 

The condition that the interface (y = [ ( x ,  t ) )  is moving with the fluid leads to 

(4) ,&.&.-@),(1)+@2),(1),&. == 0 a t  y = 5. 

We also assume that the quasi-static approximation is valid and we introduce the 
electrostatic potentials qV1) and $(2) such that 

(5) E(2). (1) = ,lj’c), (1)e -V$(Z), (1). 
Y 

Therefore the differential equation satisfied by llr(2)l (l) is Laplace’s equation 

along with the boundary conditions that the tangential component of the electric field 
is continuous a t  the interface, so that 

16 F L M  129 
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where 4 1 represents the jump across the interface. Since there are no surface charges 
a t  the surface y = 6, the normal electric displacement is continuous a t  the interface. 
Therefore 

The stress tensor is given by 

(8 )  

(9) 

6z;,Q~~zD-Q~$,D = 0 a t  y = 6. 

II.. 23 = - IIr3.. 23 + CEi Ej - +t?E,2 a,, 
where ll = p-iCE2. The normal hydrodynamical stress is balanced by the normal 
electric stress. The balance condition is then 

f#p -p#) + ( 1  - p )  6 + &(@) 2 --p@2) + +($p 2 -  p$/?) 2 )  

= Ezz(1 + t ; ) - ~ - & a ~ w - a C ~ o  ll'yD++w;D+26s(l~Eo*CrsD 

- 2ts a%, @.,D + 6: QCll';D -6; QCEiD + 26; (ICE0 @.,a - t; a 4 q D  
- 2t; {CEO @zD + 26; 4%r+'?lD + W1) a t  = 6 ,  (10) 

where 

The set of equations ( l ) ,  (4), (6)-(8) and (10) will be solved using the method of 
multiple scales (Nayfeh 1973, 1976). We expand the various variables in ascending 
powers in terms of a small dimensionless parameter 6 characterizing the steepness 
ratio of the wave. The independent variables x, t are scaled in a like manner, 

x, = P X ,  Tn = €9, ( 1 1 )  

and the variables may be expanded as 

3 

I p ( 1 ) ( x ,  y, t )  = c €n$p,(1)(x0, X I ,  x,, y, T,, T,, T!) +0(c4 ) ,  (13) 

qW~(1)(X,?J , t )  = c € n ~ ~ ) , ( l ) ( X o , X , , X , , y ,  T,, T,, T,)+0(s4). (14) 

n=1 

3 

n = 1  

Substituting from (12)-(14) into ( l ) ,  (4), (6)-(8) and (10) and equating coefficients 
of equal powers of e, we get three sets of equations of order 6 ,  2, c3. These sets of 
equations and their solutions are given in the appendix. 

The solutions of the first-order problem are valid provided that rai satisfies the 
relation 

K 
lu; = -(l-p-K'a,+K'2), (15) 

l + P  
where q)Z)Ep(@) - 6(11))2 

aE = 
#) + &) 

Equation (15) is the same linear dispersion equation as that discussed in § 1 .  It is 
clear that the electric field is strictly destabilizing in the linear sense. The dispersion 
relation does not depend on the sign of f2 )  - t?( l ) .  The stability of the interface depends 
on whether the wavenumber K is larger or smaller than KAE, where 

K& = (p- 1)i [sinh s"E + cosh gE] ,  (16) 

sinh6, = a E  

2(p-  1)t 
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The critical wavenumber K& is the linear electrohydrodynamic cutoff wavenumber 
separating stable from unstable disturbances. We shall be concerned with the case 
K 2 KhE. 

The second-order problem yields the solvability condition 

where D(X, ,  X,,  T,, T,) is the amplitude of the first-order wave (see equation (A 7 ) ) ,  
and for the third-order problem we have the condition 

where 

Equations (18) and (19) can be used to study the propagation of a finite-amplitude 
wavetrain over the surface. Using (15), (18) and (19) can be combined together to 
produce a nonlinear Schrodinger equation, by means of which one can study the 
stability of the system and obtain the electrohydrodynamic cutoff wavenumber. 

3. The Schrodinger equations 
As mentioned in $2, one can obtain a Schrodinger equation out of (18) and (19) 

with the help of (15) as follows. Differentiate equation (15) with respect to K and 

(22) 

(23) and therefore 

Substituting in (19) with the help of (15) and replacing X, and T, by enx, ent we get 

d K  aD - substitute into (18); thus aD 
ax, d w , a q '  

d K  a2D - 
~ - - -- 

w; 
-l 

2K ' -aEK'+(1+p)7  . (25)  
K 1 where 

Equation (24) is valid for all wavenumbers larger than or equal to the cutoff 
wavenumber. It can be easily transformed into a Schrodinger equation by means of 
the transformation 

16-2 
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and i t  then reads 
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Equation (26) is valid for all values of K and hence can be used to obtain the cutoff 
wavenumber. However, from (20) and (21) we see that the SchrGdinger equation is 
invalid when QE -P 00. This is t,he resonance case and i t  occurs when K = K*, where 

K* = [& 1 - p ) ] k  (27) 

Equations (24) or (26) can also be used to obtain the surface elevation. Equation 
(24) admits the following solution for temporal variation 

D = ib ,  eiso + const, (28 ) 

where b, is a constant and 

Hence 

d 2 K  
so = " 

~ 

do: 

So (30) can be expanded, for w, away from zero, since d K / d w ,  = O(1). Expanding 
and substituting for d K l d w ,  and dE,  we get 

Substituting for so into D and hence for (, we finally obtain the following expression 
of the interface displacement ( : 

This solution is obtained from (24), which is a nonlinear equation having first- and 
second-order time derivatives. The space derivative involved in the equation is only 
a first-order one. As suggested by Davey (1972) and Nayfeh (1976) we can obtain 
an equation analogous to (24) which contains a second-order space derivative by 
inserting d w , / d K  instead of d K / d w ,  into (19). With a similar procedure we get 

which is the analogous equation to (24). Equation (33) includes the first- and 
second-order spatial derivatives but involves a first-order time derivative only. One 
can show that (33) yields the same solution as given by (32) for the surface deflection. 

Changing the independent variables from x and t into 

duo 
T/* = 2 - - t ,  7* = t ,  

d K  
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a second nonlinear Schrodinger equation. We observe that ( 3 4 )  is not valid when 
wo = 0 and therefore cannot be used to obtain the cutoff wavenumber. However, the 
advantage that ( 3 4 )  contains a second-order spatial derivative and first-order time 
derivative will help considerably in establishing a stability criterion. I n  the absence 
of the electric field, (26) and ( 3 4 )  are the same as those obtained by Nayfeh (1976).  

4. The cutoff wavenumber 

as wo + 0 we find 
As mentioned in $ 3 ,  we can use (26) to obtain the cutoff wavenumber. In  the limit 

dK' 
-+ 2wO(1 + P )  [K'(2K'-aE)]-', (35) 
dw0 

6 E * -  a; - 3 K  

Hence ( 3 0 )  tends to 
K ( 2 K  -aE) 

l + P  
(371 

Since wo is near zero, so cannot be expanded as given by ( 3 1 ) ,  and [ should be 
substituted from ( 3 7 )  to yield 

Equation (37 )  shows that the cutoff wavenumber may be given by the relation 

Recalling the value of dE from ( 3 6 )  and using ( 1 5 ) ,  we get for (39 )  

6 s 2 b ; K ' 6 - 2 ~ 2 b ~ d 2 K ' 5 - [ 1 6 + ~ 2 b ;  ( - 4 d , + 3 ( 1 - p ) ) ] K 4  

+ [ 16aE + e2b; d,( 1 -/I)] - 8( 1 - P )  K 2  - 8a,( 1 - P )  K' + 8( 1 - P ) ~  = 0, (40) 

where 

The solution of the resulting equation for K (i.e. ( 4 0 ) )  leads to  the cutoff wavenumber, 
which depends on the electric field and amplitude. If we put 

K = K ,  + + 0(€3), (43 )  
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from (43) and (40)-(42) we get 
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KO = K& = (p - I)$ [sinh eE + cosh O E ] ,  (44) 

which is in agreement with the linear case. Also we get 

The linear cutoff wavenumber receives a second-order increment e2K2. The nonlinearity 
effect is stabilizing if K,  is negative and vice versa. The sign of K,, as given by (45), 
depends on the equilibrium electric field and the values of the dielectric constants 
of the two fluids, since they decide the sign of the coefficients d ,  and d,. Thus we can 
explain Taylor's observation of stable oscillations near the linear cutoff wavenumber. 

5. Stability analysis 

that  the solution of the Schrodinger equation (34) is bounded provided that 
The analysis of this section will be based on (33). It was shown by Strauss (1979) 

Thus a finite-amplitude wave propagating through the surface is stable when the 
condition given by (46) is satisfied. 

Many investigators, such as Karpman & Krushkal(1969), Hasimoto & Ono (1972), 
Nayfeh (1976) and Strauss (1979), have examined the linear stability of a finite- 
amplitude wavetrain propagating through the interface by linearly perturbing the 
solution of (33). They found that the linear stability implies the same condition (46) .  
Combining these two results one can deduce an important property of the finite- 
amplitude wave-train. It is evident that, if such a finite-amplitude wave exists, then 
i t  is linearly stable. 

Before we examine condition (46) in general we shall discuss some limiting cases. 
First we observe that the quantities 0, and d 2 w , / d K 2  have the same sign in the 

limit as both T and K approach zero for p < 1. Therefore electrohydrodynamic 
Stokes waves are unstable for p < 1. The electric field has no effect in this case. 

For capillary waves both T ansd K -P CO. The system is stable if 

p > 3-22/2. (47) 

The above condition is independent of the electric field. Therefore the electric field 
has no effect for the present case too. 

I n  general, the sign of 0, and d 2 u o / d K 2  depends on E( l ) ,  E(,), E"(l) and 8,). A 
stability chart can be drawn whose boundary curves are given by OE = 0 and 
d 2 u o / d K 2  = 0. The two equations, on substitution for 0, and uo, take the form 

3 K 4 - 8 ( p -  1)+K'3~inhgE+6K'2(1-p)-(1-p)2 = 0, (48) 
2 ~ 4 [ 2 ( 1  -p)z-(i +p)21 + 4 K 3 [ h 1 a ~ ( 1  + p )  (1 -p)-aE(i-p)2 

- h3( 1 - p )  aE - 2( 1 +p)' aE(8h2 - I)]  + K2[8( 1 - P ) ~  

-401% h3 h1( 1 + p )  + 401k h3( 1 - p )  - 7( 1 - p )  (1 +p) , ]  

+4K'(1--p)r--h,a,(l-p)+h,a,(l+p)(1-p) 

-aE(l -p),+ - 1) (1 +p),] +4(1 -p), [( 1 - P ) ~  + (1 +p),] = 0, (49) 



We may also observe that the curve 

x 2  = i(1 - p )  (52) 

is a third transition curve, because RE, and accordingly 0,, changes sign across this 
curve. The third curve represents the second harmonic resonance. Since the relation 
is independent of the electric field, the curve will be the same for all the cases discussed 
below. 

We see from (52), (53) that the signs of the factors h,, h,, h3 depend on the sign 
of 81)-t(2). Therefore the number of real positive roots of (49) is governed by the 
properties of the dielectric constant of the upper and lower fluids. 

Accordingly the branches of the curves 0, = 0, and consequently the stability 
criterion, will strongly depend on whether the lower fluid or the upper fluid has a 
greater dielectric constant. The result is in contrast with the linear theory, where the 
sign of 13) - Z-(2) has no implications for the stability criterion. 

A similar phenomenon was observed in the surface instability of ferromagnetic 
fluids in a vertical magnetic field. Owing to nonlinear effects, Galitis (1969) found that 
the instability depends on the magnetic permeability. He used the boundary 
condition ,u(')H$) = ,d2)H2), which is analogous to our condition C(l)E$) = 62)E(,2) 
given by ( 2 ) .  The above result is mathematically expected. The electrohydrodynamic 
body force is 

- . V l l  + qE - &E2V€. 

Since both of the fluids are homogeneous, the electric body force vanishes in the bulk 
of the fluids. The condition of continuity of the normal stress is simply obtained by 
integrating the body force across the interface. The jump in the values of 6 and E, 
will then contribute to  the normal stress. The effect did not appear in the linear theory 
because the body force is nonlinear. 

The stability analysis may be understood by studying the stability graphs 
represented by (48)-(52). 

The curves in figures 2 4  correspond to the case > t?) while the curves in figures 
5-7 correspond to the case 

In the limit as aE + 0 i.e. in absence of electric field) the curves reduce to those 
corresponding to the pure hydrodynamical case obtained by Nayfeh (1976). The 
curves for this case (aE -+ 0) are shown in figure 1.  They are also drawn in broken 
lines in figure 2 .  The curves to the right of any of these graphs represent the linear 
case. As 01, -+ 0, Nayfeh showed that as the amplitude increases the curves shift to 
the left and two regions of subharmonic resonance appear. For p = 0, stability is only 
possible for values of K between 0393 and 0.707, approximately. As a, increases, 
the stability regions are redistributed due to the presence of the electric field. The 
changes of loci of 0, = 0, 0: = 0 produce new stable and unstable regions. 

We plot curves for K against p for constant values of aE and also K versus a, 
for constant values of p. For all values of a,, the transition curve K 2  = *( 1 - p )  is the 
same and coincides with the corresponding curve for aE -+ 0. The curve w : =  0 shifts 
above as aE increases, producing more unstable areas. The behaviour of the curve 
0, = 0 depends on the value of a, and the sign of E"(l)-E"E"f2). 

< 8,). 
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lo-' 

K' 

10-1 

10-3 

0 0.2 0.4 0.6 0.8 1.0 1.2 

P 

FIQURE 1. Stability diagram for a, = 0 (hydrodynamical case). Symbol 0 represents the curve 
0, l a E m 0  = 0. The symbol 8 represents the curve (d2wo/dK'2)  = 0, the symbol A represents 
the curve K 2  = +( 1 - p ) ,  LHD refers to linear hydrodynamic curve K = (p- l);, U refers to unstable 
region and S refers to stable region. 

10 

1 

lo-' 

K' 

10-2 

I O - 1  , , , , 1 ,j 
0 0.2 0.4 0.6 0.8 1.0 1.2 

P 

FIQURE 2. Stability diagram for a, = 0.031 936 1 with 8') > E"(2) .  The symbol 0 represents the curve 
0, = 0, the symbol x represents the curve d2w,, /dK2 = 0, LEHD refers to the curve wo = 0;  the 
shaded regions are U,,  U, ,  S,, U, and S,, and represent the newly formed regions due to the presence 
of electric field. 
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K' 

10-3 I 
0 0.2 0.4 0.6 0.8 1.0 1.2 

P 

10-2 

K' 

103 

10 

1 

lo-' 

10-3 I I 1 I 
0 0.2 0.4 0.6 0.8 1.0 1.2 

P 

10-3 I I I 1  
0 0.2 0.4 0.6 0.8 '1.0 1.7 

P 
FIGURE 3. Stability diagram in the (K', p)-plane. The (a)  refers to the c&se aE = 0344083 (Z(') > Ztz)), 
the letter ( b )  refers to the case aE = 1.94554 (B( l )  > 6(z)), while ( e )  corresponds to a, = 3.04913 
(8l) > 8')). The dotted curves refer to aE = 0. The symbol Q refers to the loci of 0, = 0, the symbol 
A refers to the curve K2 = i(1 - p ) ,  the symbol x refers to the curve d 2 w , / d K 2  = 0. 

Figures 2, 3 represent the variations of the stability charts in the (K',p)-plane, 
for various values of aE, for the case F( l )  > F(z).  Comparing these graphs with the case 
uE 0, we see that for small values of aE (figure 2, where 0 1 ~  = 0.03 193), the 0, = 0 
curve diverges slightly to  the left (K' < 1)  forming stable regions for K > [+[(1 - p ) ] $ ,  
K > K'(OE)aEso = 0). We also observe that the first-subharmonic-resonance region 
is nearly the same as in the absence of electric field except for p > 0.75 where the 
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Lower limit Upper limit 
a E  of K of K 

0 0.393 0.707 
003 1 0.394 0707 
0.344 0.410 0707 
1.9455 0.179, 0.708 0707, 0753 
3049 00949, 1.095 0707, 3.5022 

TABLE 1. Range of stable values of K a t  p = 0, d(l) > d@) 

region decreases. The second-hirmonic-resonance region is now composed of two 
joined portions. The right portion K < [+(1 -p ) ] i  was stable when 01, = 0. For p = 0 
the system is stable only for 0.394 < K < 0.707. 

As aE increases, the curve 0, = 0 forms a loop which expands gradually to suppress 
a bigger part of the first unstable region, and the field is then stabilizing. This 
influence increases as p increases. However, for higher values of K the field has a 
destabilizing effect, as shown in figures 2 , 3 .  The shaded regions are the regions which 
are changed from stable to unstable regions or vice versa owing to the presence of the 
electric field. 

It is interesting to examine the range of K a t  p = 0 which yields stability for 
various values of aE. For the last two values of a, in table 1,  two regions of stability 
are possible. The reason is that the loop formed by 0, = 0 is enlarged as aE increases 
until it crosses the K axis, producing two regions of stability. When the curve 00" = 0 
lies above the curve K 2  = t (1  -p ) ,  a portion of the second harmonic resonance 
corresponding to K < K'(@,) is stabilized. Thus the electric field plays a dual role 
when E"il) > P), suppressing subharmonic resonance for smaller values of K ,  and 
destabilizing for larger values of K .  

The above results are more obvious if we study the stability charts in the 
(K',a,)-plane (figure 4) that represents the case p = 0. For values of aEl < 1.945, 
stability is possible provided that the values of K lie within the region S,. The range 
of K decreases as aE1 increases, keeping K = 0.707 as an upper bound. For 
aEl > 1.945 two regions of stability appear: (S ,  S'). The lower region has K = 0.707 
as an upper bound. S' increases as aE increases starting from the positive root 
(aEl,  aE2) of the equation 

2h3 a&( 1 -hl) + 3 4 2  OIEZ(h1- h, - 1)  + 9 = 0, (53) 

where hl,hz and h, are given by (50), (51), and p = 0. It is clear that the field is 
stabilizing for a,, < aE < aE2. For aE > uE2 the field is still stabilizing for 

K'(@,I, = o )  < K < 44. 
On the other hand, when 8,) < E"(') (figures 5 ,  6), the curve w: = 0 behaves in a 

manner similar to the previous case. The curve 0, = 0 changes its behaviour as aE 
increases, but does not form a loop in the first quadrant for p < 1 .  Therefore the first 
unstable region cannot be stabilized significantly for the present case, except for a 
small band near p = 0. The first stable region is disturbed and an unstable portion 
appears for a smaller value of p. When the curve 00" = 0 lies below the curve 
K 2  = t(1 - p ) ,  a stable region appears above the latter curve instead of the infinite 
strip of the second unstable region, and the field is then stabilizing for higher values 
of K ( K  > [$(l-p)];). When aE increases, the curve ~ 0 "  = 0 shifts above the curve 
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50 200' 300 400 

&E 

FIGURE 4. Stability diagram in the ( K ,  a,)-plane for p = 0 with $) > @). The symbol,?. represents 
the curve d 2 q , / d K 2  = 0, the symbol represents the curve 0, = 0, and the symbol represents 
the curve K = 43. 

First region Second region 

Lower 
limit of Upper Lower Upper 

a, K limit limit limit 

0 
00319 
0.0877 
0.1452 
0.203 
02605 
0320 
0.908 
1.795 
2.982 
4469 

0393 
0394 
0370 
0280 
0210 
0205 
0.408 
0434 
0562 
0707 
0707 

0707 
0707 
0385 
0390 
0420 
0410 
0507 
0448 
0.601 
0904 
1.375 

- 
0707 
0707 
0707 
3.396 
5.604 

- 

- 

3 5  189 
99842 

197.442 
327.994 
491.499 

TABLE 2. Ranges of stable regions of K for p = 0, E"(l) < .C(2) 

K = [t(l -p)]4, producing an unstable region, though it stabilizes the system for 
values of K' (K' > K'(W;~-, , ) ,  p < p(@aE-,,)). Therefore the electric field is stabilizing 
for larger values of K for a range of smaller values of p,  and destabilizing for smaller 
values of K .  I n  table 2 we calculate the range for K yielding stability for p = 0 for 
various values of aE, when ;(l) < t@). 
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A 

(I t 
10-3 

0 0.2 0.4 0.6 0.8 1.0 1.2 

P 

FIQURE 5. The case aE = 0.907935 with E"@) > E"(l). The symbols 0 represent the curve 0, = 0, x 
represents d2W, f d K 2  = 0, and represents K a  = &(I - p ) .  Shaded regions are gain regions due to 
the presence of the electric field. 

P 
FIQURE 6 ( n ) .  For caption see p. 488. 
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lo-' 
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10-4 
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0 0.2 0.4 0.6 0.8 1.0 1.2 
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FIQURE 6 ( b ,  c ) .  For caption see p. 488. 
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1 0 3  
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K' 1 
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1 0 - 3  
0 0.2 0.4 0.6 0.8 1.0 1.2 
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1 0 k  

K' 1 
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10-3 I I I I * I 
0 0.2 0.4 0.6 0.8 1.0 1.2 

P 

FIGURE 6. The (K', p)-plane for E"@) > E"('). The ( a )  refers to case aE = 0031 936; ( b )  to aE = 0.202 885 ; 
(c) to aE = 0320108; ( d )  t o  ag = 13'9541 and ( e )  to  aE = 4.46934. The symbols 0, x , are as 

in figure 5. 
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FIGURE 7 .  The ( K ,  a,)-plane for 8') > W .  The (a )  refers to p = 0 ;  ( b )  to p = 0.3 and ( c )  to 
p = 0.8. The symbols+, 0 are as in figure 4, and A represents the curve K 2  = $ ( I  - p ) .  
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The discussion becomes more obvious when we examine the ( K ,  a,)-plane (figure 7 )  
for Z(l1 < Z(2). Figure 7 is the stability diagram corresponding to the cases p = 0, 
p = 0.3, p = 0.8. I n  absence of electric field, (01, = 0) stability is only possible when 
0393 < K < 0 7 0 7 .  As a,  increases, two stable regions appear because the curve 
@,(a,) = 0 has two branches. The stabilizing influence increases considerably as a, 
exceeds approximately 2.5. 

For p = 03 we see that the curve OE = 0, with the two transition curves w,“ = 0 
and K = 2/&, produces two stable regions below the curve K = 2/& and two stable 
regions above it. For the first two stable regions, the larger region gradually dies down 
when 01, N 1-5 and the smaller region also dies down when 01, 1: 2.5. We see that the 
field is relatively destabilizing for K < 2/&. But for the second two stable regions, 
i.e. for K > d&, the regions grow with increasing aE. For p = 08 we see that 0, 
lies entirely below the curve K = 2/& for a, > 0, and makes two stable regions; one 
of the regions lies between K > w,” and K < OE for small a,, i.e. 0 < aE < 0.5, and 
the other region lies between K > OE and K < 2/& for 01, 9 0.5. Also the curve of 
00” forms a stable region for K’ > w; and K > z/& for all values ofa,. I n  this figure 
we see that the field destabilizes for the two regions d& > K > 0, for small uE and 
K > dh, K < w0” when aE 3 0 5 .  The instability regions have larger ranges for 
larger values of 01,. 

From the numerical discussion, i t  is evident that, apart from the effect of the 
variation of the dielectric constant, the electric field plays a dual role in the stability 
criterion in contrast with the linear theory. It seems in general that  electrohydro- 
dynamics is a nonlinear phenomenon and i t  is better understood via nonlinear 
analysis. 
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Appendix 

of equal powers of E ,  we get, for terms of order E ,  the set of equations 
If we substitute for <, qk,  $, as given by (11)-(14), into (1)-(10) and equate terms 
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with the solutions 

A. A. Mohamed and E. F. El Shehawey 

6 - (J 2 -  E 
0 2  e2f(K'Xo-% To) + c.c., 
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+2- atl i] E E , ~  - a@ 1 +2- g CEO- ~~1 + ~ - - - E E , -  as1i],. -2- atl i] 2 - 1  w 1 a @  1 ax, ax, ax, ax, ax, ax, ax, ax, ay 

The solutions of the above set of equations yield the solvability condition given by 
(19). 
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